Abstract
Curvature elasticity is used to derive the equilibrium conditions that govern the mechanics of membrane–membrane adhesion. These include the Euler–Lagrange equations and the interface conditions which are derived here for the most general class of strain energies permissible for fluid surfaces. The theory is specialized for homogeneous membranes with quadratic ‘Helfrich’-type energies with non-uniform spontaneous curvatures. The results are employed to solve four-point boundary value problems that simulate the equilibrium shapes of lipid vesicles that adhere to each other. Numerical studies are conducted to investigate the effect of relative sizes, osmotic pressures, and adhesion-induced spontaneous curvature on the morphology of adhered vesicles.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.