Abstract

In this paper, we shall discuss the theory of geodesics in information geometry, and an application in astrophysics. We will study how gradient flows in information geometry describe geodesics, explore the related mechanics by introducing a constraint, and apply our theory to Gaussian model and black hole thermodynamics. Thus, we demonstrate how deformation of gradient flows leads to more general Randers–Finsler metrics, describe Hamiltonian mechanics that derive from a constraint, and prove duality via canonical transformation. We also verified our theories for a deformation of the Gaussian model, and described dynamical evolution of flat metrics for Kerr and Reissner–Nordström black holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call