Abstract

To understand the mechanics of cellular/intracellular packing of one-dimensional nanomaterials, we performed theoretical analysis and molecular dynamics simulations to investigate how the morphology and mechanical behaviors of a lipid vesicle are regulated by encapsulated rigid nanorods of finite and non-uniform diameters, including a cylindrical rod, a rod with widened ends, a cone-shaped rod, and a screwdriver-shaped rod. As the rod length increases, the vesicle evolves from a sphere into different shapes, such as a lemon, a conga drum, a cherry, a bowling pin, or a tubular shape for long and thick rods. The contact between the vesicle protrusion and the rod plays an important role in regulating the vesicle tubulation, membrane tension, and axial contact force on the rod. Our analysis provides a theoretical basis to understand a wide range of experiments on morphological transitions that occur in cellular packing of actin or microtubule bundles, mitotic cell division, and intracellular packing of carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.