Abstract

It has been recognized that cells are able to actively sense and respond to the mechanical signals through an orchestration of many subcellular processes, such as cytoskeleton remodeling, nucleus reorientation, and polarization. However, the underlying mechanisms that regulate these behaviors are largely elusive; in particular, the quantitative understanding of these mechanical responses is lacking. In this study, combining experimental measurement and theoretical modeling, we studied the effects of rigidity and pattern geometry of substrate on collective cell behaviors. We showed that the mechanical force took pivotal roles in regulating the alignment and polarization of cells and subcellular structures. The cell, cytoskeleton, and nucleus preferred to align and polarize along the direction of maximum principal stress in cell monolayer, and the driving force is the in-plane maximum shear stress. The higher the maximum shear stress, the more the cells and their subcellular structures preferred to align and polarize along the direction of maximum principal stress. In addition, we proved that in response to the change of in-plane shear stresses, the actin cytoskeleton is more sensitive than the nucleus. This work provides important insights into the mechanisms of cellular and subcellular responses to mechanical signals. And it also suggests that the mechanical force does matter in cell behaviors, and quantitative studies through mechanical modeling are indispensable in biomedical and tissue engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.