Abstract
The cable shovel excavator is used for primary production in many surface mining operations. A major problem in excavation is the variability of material diggability, resulting in varying mechanical energy input and stress loading of shovel dipper-and-tooth assembly across the working bench. This variability impacts the shovel dipper and tooth assembly in hard formations. In addition, the geometrical constraints within the working environment impose production limitations resulting in low production efficiency and high operating costs. A potential solution to the above problems is the deployment of an intelligent shovel excavation (ISE) technology, with real-time formation identification, recording and knowledge transmission capabilities. This paper advances the ISE technology by developing dynamic models of the cable shovel using the Newton–Euler techniques. The models include the main factors that influence shovel performance including the effect of both linear and angular motions of dipper handle and dipper. A path trajectory is modeled to demonstrate the dynamic velocity and acceleration profiles. Numerical examples show that the critical performance variables include geometrical and physical properties of the dipper and dipper handle, digging strategies and formation properties. The kinematic results show that the critical phase occurs between 1.5 and 2.0 s of a 3-s excavation cycle with occurrence of maximum kinematic effects. The dynamic results also show a similar trend with maximum dynamic effects between 1.5 and 2.0 s. The results also show that the maximum resistive force occurs at 1.625 s within the excavation cycle. At this point the maximum breakout force of the equipment is reached and any increase in the resistive load will require further fragmentation. The results provide appropriate information for excavation planning and execution. These models form the basis for developing dynamic shovel simulators for the ISE technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.