Abstract
We report the results of direct mechanical tests of the fibrous periosteum from the tibiotarsi of white leghorn chicks at 4, 6, 8, 9, 10, 11, 12, and 14 weeks of age using a newly developed sample isolation technique. Additionally, this technique allows the determination of the apparent in vivo load on the fibrous periosteum. The periosteum has a highly nonlinear stress-strain relationship at all ages. For loading below the in vivo level, the periosteum is pliant and mean tensile modulus is 3.35 MPa (±1.84 SD, n = 75). For loading above the in vivo level, tensile stiffness is nearly two orders of magnitude greater. In the region of high stiffness, mean modulus is 229.5 MPa (±89.6, n = 72). In vivo, the periosteum is loaded at the transition between these two stiffness regions. We interpret this as indicating that, in vivo, the collagen fibers of the periosteum are aligned, but subject to minimal loading. Stress levels in the periosteum corresponding to in vivo conditions indicate modest loading, and mean apparent in vivo stress levels are 0.92 MPa (±0.37 SD, n = 67). A second technique demonstrated that the adhesion of the periosteum in the diaphyseal region (1–6 weeks of age) is minimal, but is substantial in the metaphyseal region. The metaphyseal adhesion will affect the transmission of load between the physes. These studies suggest that growth of the fibrous periosteum follows the longitudinal growth of the bone, rather than the periosteum having a direct mechanical influence on growth plate activity. Comparison of tensile properties over the course of growth indicates a substantial increase in periosteal stiffness in the early portion of the growth period, which reaches a maximum at approximately 9 weeks posthatching. There is also a marked decline in periosteal stiffness as growth rate declines in the latest stages of growth (14 weeks). This suggests that the basic properties of periosteal collagen may undergo a transition during the course of this tissue’s brief functional lifetime; that is, during long bone growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.