Abstract

AbstractHemostasis, a process which causes bleeding to stop, can be enhanced using chitosan; but the detailed mechanism is unclear. Red blood cells (RBCs) adhere to chitosan because of their opposite charges, but the adhesion force is small, 3.83 pN as measured here using an optical tweezer, such that the direct adhesion cannot be the sole cause for hemostasis. However, it was observed in this study that layer structures of aggregated RBCs were formed next to chitosan objects in both static and flowing environments, but not formed next to cotton and rayon yarns. The layer structure is the clue for the initiation of hemostatsis. Through the supporting measurements of zeta potentials of RBCs and pH's using blood-chitosan mixtures, it is proposed here that the formation of the RBC layer structure next to chitosan objects is due to the reduction of repulsive electric double layer force between RBCs, because of the association of H+deprotonated from chitosan with COO−on RBC membrane, under the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. The results are beneficial for designing effective chitosan-based wound dressings, and also for general biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.