Abstract

AbstractThe lateral deformation behavior of a RC column is particularly important because it not only magnifies the moment but also affects the ability of the column—and, subsequently, the frame—to sway and absorb energy at all stages of loading. The lateral deformation is affected by disturbed regions, such as tensile cracks or compression wedges, which are often simulated with the help of hinges whose properties are derived empirically. Being empirical, these hinges can only be used within the bounds of the tests from which they were derived, and in this respect are of limited use. In this paper, a mechanics-based hinge is developed that can be used at all stages of loading (that is, at serviceability through to ultimate) and also during failure. The mechanics-based model is based on the principle of plane sections remaining plane, shear-friction theory that quantifies the behavior of RC across sliding planes, and partial-interaction theory that allows for slip between the reinforcement and the encasing...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.