Abstract

ABSTRACTFlight—defined as the ability to produce useful aerodynamic forces by flapping wings—is one of the most demanding adaptations in vertebrates. The mechanical problems of flight ensure considerable external morphological homogeneity and behavioural similarity in extant fliers. Observations of the vortex wakes and wingbeat geometry of modern birds and bats confirm that the two groups are mechanically very similar, despite differences in phylogeny, anatomy and physiology. With this background it is possible to attack two problems: the evolution of flight in vertebrates, and the flight performance of extinct animals such as pterosaurs andArchaeopteryx.The origin of flight has been surrounded by considerable controversy, due in part to terminological inconsistencies, in part to phylogenetic uncertainty over the relationships of birds, bats and pterosaurs, in part to disagreement over the interpretation of the available fossil evidence, and in part to argument over the relative importance of morphological, mechanical and ecological specialisations. The mechanical changes needed in the course of the evolution of flight favour a gliding origin of tetrapod flight, and on mechanical and ecological grounds the alternative cursorial hypothesis may be discounted. This argument is particularly strong in bats, but has been thought to be weaker in birds owing to apparent inconsistencies with the fossil evidence. However, fossils of the Jurassic theropod dinosaurArchaeopteryxalso support a gliding origin for flight, and suggest that this animal was adapted for flapping flight at moderately high speeds associated with gliding; it could fly less well at the slow speeds which would have been required for incipient flight in a running cursor, and at which the wingbeat is aerodynamically and kinematically considerably more complex. Slow flight in birds and bats is the more derived condition, and vertebrate flapping flight apparently evolved through a gliding stage.The pterosaurs have become the subject of much controversy over the nature of their stance, the wing surface, and the degree of involvement of the leg in the wing membrane. Reconstruction of their wings indicates proficient flying animals, and comparison with birds suggests that most pterosaurs probably occupied marine or coastal/estuarine habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.