Abstract

ABSTRACTThe plasticity of micro-pillar deformation has widely been studied by discrete dislocation dynamics simulations to explain the so-called size effect. In this study the role of glissile junctions forming during plastic deformation under various loading scenarios is in the center of interest. The activity of these naturally forming dislocation sources is followed in detail. Surprisingly these junctions are rather active sources and not just another obstacle as often assumed. Their relative contribution to the overall dislocation density for the simulated specimens reaches often values of 20% or even more. The formation of such a glissile junction is often correlated to stress drops or the end of a stress drop. It is therefore suggested – at least for the sample sizes considered – that this dislocation multiplication mechanism should be take into account in continuum models such as crystal plasticity of higher order dislocation continuum theories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.