Abstract
Calcium dynamics in the epidermis play a crucial role in barrier homeostasis and keratinocyte differentiation. We have recently suggested that the electro-physiological responses of the keratinocyte represent the frontier of the skin sensory system for environmental stimuli. In the present study, we have evaluated the responses of proliferating and differentiated human keratinocytes to mechanical stress by measuring the intracellular calcium level. Before differentiation, mechanical stress induces a calcium wave over a limited area; this is completely blocked by apyrase, which degrades ATP. In the case of differentiated keratinocytes, the calcium wave propagates over a larger area. Application of apyrase does not completely inhibit this wave. Thus, in differentiated cells, the induction of calcium waves might involve not only ATP, but also another factor. Immunohistochemical studies indicate that connexins 26 and 43, both components of gap junctions, are expressed in the cell membrane of differentiated keratinocytes. Application of octanol or carbenxolone, which block gap junctions, significantly reduces calcium wave propagation in differentiated keratinocytes. Thus, signaling via gap junctions might be involved in the induction of calcium waves in response to mechanical stress at the upper layer of the epidermis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.