Abstract
Soft, flexible, and stretchable electronic devices provide novel integration opportunities for wearable and implantable technologies. Despite the existing efforts to endow electronics with the capability of large deformation, the main technological challenge is still in the absence of suitable materials for the manufacturing of stretchable electronic circuits and devices with active (sensitive) and passive (stable) components. Here, we present a universal material, based on single-walled carbon nanotube (SWCNT) films deposited on a polydimethylsiloxane (PDMS) substrate, which can act as a material being both sensitive and insensitive to strain. The diverse performance of SWCNT/PDMS structures was achieved by two simple dry-transfer fabrication approaches: SWCNT film deposition onto the as-prepared PDMS and on the prestretched PDMS surface. The correlation between applied strain, microstructural evolution, and electro-optical properties is discussed on the basis of both experimental and computational results. The SWCNT/PDMS material with the mechanically tunable performance has a small relative resistance change from 0.05 to 0.07, while being stretched from 10 to 40% (stable electrode applications). A high sensitivity of 20.1 of the SWCNT/PDMS structures at a 100% strain was achieved (strain sensing applications). Our SWCNT/PDMS structures have superior transparency and conductivity compared to the ones reported previously, including the SWCNT/PDMS structures, obtained by wet processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.