Abstract
Three-dimensional periodic structures have many applications in acoustics and their properties are strongly related to structural details. Here we demonstrate through simulations the ability to tune the phononic band gaps of 3D periodic elastomeric structures using deformation. The elastomeric nature of the material makes the transformation of the band gaps a reversible and repeatable process, providing avenues for the design of tunable 3D phononic crystals such as sonic switches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.