Abstract

Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.