Abstract

Nanocellulose hydrogels are promising sustainable biosorbents for removing heavy metal ions for wastewater treatment. However, the nanocellulose hydrogels reported thus far typically suffer from inferior adsorption performance and/or poor mechanical stability, thus limiting their industrial applications. Achieving the goals of mechanical stability and high removal capability remains a crucial technical challenge, which may be addressed, as presented in this study, by developing novel core-shell carboxymethylated cellulose nanofibril (CMCNF)/sodium alginate (SA) hydrogel beads (CAbs). By immobilizing CMCNFs (shell) on the surface of the SA hydrogel bead (core) via electrostatic attractions and hydrogen bonding, a mechanically stable hydrogel bead with a core-shell configuration was constructed, which shows a Cu(II) removal capacity of up to 221 mg/g that exceeds that of CMCNFs and most other nanocellulose structural adsorbents. Furthermore, both the formation principle of the core-shell structure and the Cu(II) removal mechanism were explored in detail. Finally, we demonstrated a potential application of core-shell CAbs to treat drinking water with a low concentration of Cu(II) using a homemade column adsorption device. This work brings sustainable nanocellulose adsorbents a step closer to industrial applications for Cu(II) wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call