Abstract

Modulating the interactions between biopolymer matrix and nanofillers highly determined the mechanical performances of composite packaging materials. Herein, we innovatively proposed a sort of eco-friendly and mechanically robust carboxymethyl cellulose/graphene oxide/tannic acid/polyetherimide (CMC/GO/TA/PEI, CGTP) composite by employing PEI as cross-linker and TA as proton donor. The amidation reaction between -NH2 and -COOH chemically connected the CMC/GO, CMC/CMC and GO/GO and the physical interaction (e.g. hydrogen bonds and molecular entanglements) was beneficial to form dense structures. The chemical/physical bonds among polymers and nanofillers contributed to dissipate the external energy. The toughness was effectively reinforced from 1.68 MJ/m3 for CGTP0 to 4.63 MJ/m3 for CGTP1.0. Furthermore, the CGTP1.0 composite film also delivered improved gas (moisture and oxygen) barriers, UV protection and antimicrobial features. Originating from these merits, the shelf life of fresh fruits (e.g. strawberries, blueberries and cherry tomatoes) was prolonged at least 5 days under ambient conditions when the packaging box was covered by the fabricated CGTP1.0 film. Our findings not only provided a facial strategy to reinforce the interactions between biopolymer matrix and nanofillers, but also boosted the development of eco-friendly packaging materials with robust structures in the area of food packaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call