Abstract

Chitosan functionalized multiwalled carbon nanotubes (CS-MWCNTs) are prepared using the [2 + 1] cycloaddition of nitrenes to the π electron system of carbon nanotubes followed by an amidation reaction with chitosan. The analysis of transmission electron microscopy (TEM) micrographs suggests the presence of more than 14 nm of chitosan grafted onto the MWCNTs, and the covalent linkage of chitosan with the MWCNTs is confirmed from FTIR and Raman spectra, XPS and energy dispersive X-ray spectroscopy (EDS) elemental mapping. The grafting density calculated using thermogravimetric analysis was 1.8 chitosan chains per 1000 MWCNT carbons. The effectiveness of the biofunctionalized CS-MWCNTs as a reinforcing filler (3 wt%) in a chitosan polymer matrix was verified by the dramatic enhancement of the mechanical properties (the tensile strength of the composite is significantly increased to 81.3 MPa from 36.5 MPa for pure chitosan, the highest modulus was up to 4.4 GPa for the composite with 3 wt% CS-MWCNTs) with a high elongation-at-break. The interfacial bonding between the CS-MWCNTs and the chitosan matrix plays a crucial role in the enhancement of the physical performance of the MWCNT-based composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.