Abstract

Zinc coatings and superhydrophobic surfaces have their own characteristics in terms of metal corrosion resistance. Herein, we have prepared a robust and repairable superhydrophobic zinc coating (SZC) based on a widely commercially available cold galvanized paint via a fast (within 10 min) and facile process for corrosion resistance. Specifically, the cold galvanized paint was sprayed onto the iron substrate, followed by acetic acid (HAc) etching and stearic acid (STA) hydrophobizing. The as-obtained sample was coded as Fe-Zn-HAc-STA and possessed an apparent contact angle of 168.4 ± 1.5° as well as a sliding angle of 3.5 ± 1.2°. The Fe-Zn-HAc-STA sample was mechanically durable and easily repairable. After being ultrasonicated in ethanol for 100 min, the superhydrophobicity was still retained. The Fe-Zn-HAc-STA sample lost its superhydrophobicity after being abraded against sandpaper with a load of 100 g and regained its superhydrophobicity after HAc etching and subsequent STA hydrophobizing. The corrosion resistance of the SZC was investigated by immersing the Fe-Zn-HAc-STA sample into the static or dynamic aqueous solution of NaCl (3.5 wt.%) and the lasting life of the entrapped underwater air layer (EUAL) was roughly determined by the turning point at the variation curve of surface wettability against immersion time. The lasting life of the EUAL iwas 8 to 10 days for the SZC in the static NaCl solution and it decreased sharply to 12 h in a dynamic one with the flow rate of 2 and 4 m/s. This suggests that the superhydrophobic surface provided extra corrosion protection of 8 to 10 days or 12 h to the zinc coating. We hope that the SZC may find its practical application due to the facile and fast fabrication procedure, the good mechanical durability, the easy repairability, and the good corrosion protection.

Highlights

  • IntroductionPeople are using conversion coatings, such as chromate conversion coating and phosphate conversion coating, to improve its corrosion resistance

  • Iron and steel are the most common metals used in industry

  • As the etching time increased to 12 min, the nano-wrinkles became much denser (Figure 1(b3)) and the superhydrophobicity was optimum

Read more

Summary

Introduction

People are using conversion coatings, such as chromate conversion coating and phosphate conversion coating, to improve its corrosion resistance These conversion coatings have found wide practical application, possess certain inherent disadvantages such as the carcinogenicity caused by the hexavalent chromium [2] and the high energy costs caused by the high treating temperature [3]. The cold zinc-spraying coating is an environment-friendly alternative with the standard electrode potential of −0.76 V, which is more active than iron (−0.44 V) [4]. When the coating is attacked, the zinc powder is corroded as the anode first, and the base iron is protected as the cathode, so the corrosion rate of iron can be slowed down significantly

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.