Abstract

The dry sliding behavior of columnar Cu with vertical orientation (VO) and horizontal orientation (HO) coupling with 1045 steel was studied. The results show that when the sliding distance is 672 m, the friction coefficient of HO Cu is 0.21 lower than that of VO Cu, and the wear rate is reduced by 0.63·10−6 g·N−1m−1; when the sliding distance is 1344 m, the friction coefficient of HO Cu is 0.10 lower than that of VO Cu, and the wear rate is reduced by 0.31·10−6 g·N−1m−1. The Fe3O4 oxide was detected on the wear surface of HO Cu by Raman spectroscopy. And it plays a greater role in lubrication and protection of friction layer. On the worn surface of VO Cu, there is obvious softening caused by thermal activation or composition mixing. This softening will lead to a significant decrease in the strength of the friction layer, and the friction coefficient and wear loss increase negatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.