Abstract

Described herein is the first example of mechanically induced single-molecule white-light emission based on excited-state intramolecular proton transfer (ESIPT) materials. The mechanism of mechanochromism is clearly disclosed by powder and single crystal X-ray diffraction (XRD) data, infrared spectroscopy, and fluorescence up-conversion measurement, etc. 2-(2'-Hydroxyphenyl)oxazole (6b) with a herringbone packing motif exhibits a predominant keto-form emission, giving off yellowish-green fluorescence. Mechanical grinding transforms the herringbone packing motif into a brickwork packing motif, decreases the intermolecular distances, which results in an enhanced intermolecular charge-transfer interaction, and therefore changes the ESIPT dynamics, leading to an enhanced enol-form emission and white fluorescence. Herringbone-packing 6b is thermodynamically more stable than brickwork-packing 6b. Thus, the latter can convert to the former by solvent fuming or thermal annealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.