Abstract
Amyloid fibrils are primarily known in a pathogenic context for their association with a wide range of debilitating human diseases. Here we show a marine invertebrate (Entobdella soleae) utilizes functional amyloid fibrils comparable to those of a unicellular prokaryote (Escherichia coli). Thioflavin-T binding and Raman spectroscopy provided evidence for the presence of amyloid in the adhesive of Entobdella soleae. We elucidated that for these two very different organisms, amyloid fibrils provide adhesive and cohesive strength to their natural adhesives. Comparing the nanoscale mechanical responses of these fibrils with those of pathogenic amyloid by atomic force microscopy revealed that the molecular level origin of the cohesive strength was associated with the generic intermolecular β-sheet structure of amyloid fibrils. Functional adhesive residues were found only in the case of the functional amyloid. Atomic force microscopy provided a useful means to characterize the internal structural forces within individual amyloid fibrils and how these relate to the mechanical performance of both functional and pathogenic amyloid. The mechanistic link of amyloid-based cohesive and adhesive strength could be widespread amongst natural adhesives, irrespective of environment, providing a new strategy for biomimicry and a new source of materials for understanding the formation and stability of amyloid fibrils more generally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.