Abstract

Metallic nanomaterials are widely used in micro/nanodevices. However, the mechanically driven microstructure evolution in these nanomaterials is not clearly understood, particularly when large stress and strain gradients are present. Here, we report the in situ bending experiment of Ni nanowires containing nanoscale twin lamellae using high-resolution transmission electron microscopy. We found that the large, localized bending deformation of Ni nanowires initially resulted in the formation of a low-angle tilt grain boundary (GB), consisting of randomly distributed dislocations in a diffuse GB layer. Further bending intensified the local plastic deformation and thus led to the severe distortion and collapse of local lattice domains in the GB region, thereby transforming a low-angle GB to a high-angle GB. Atomistic simulations, coupled with in situ atomic-scale imaging, unravelled the roles of bending-induced strain gradients and associated geometrically necessary dislocations in GB formation. These results offer a valuable understanding of the mechanically driven microstructure changes in metallic nanomaterials through GB formation. The work also has implications for refining the grains in bulk nanocrystalline materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.