Abstract

Graphene oxide (GO) is promising for a variety of applications due to its excellent dispersibility and processability. However, current chemical oxidation routes have several drawbacks, including the use of explosive oxidizing agents, residual metal ions contaminations, and the creation of irreparable hole defects on the GO sheet. The electrochemical exfoliation and oxidation of graphite is a potentially greener approach without the need for extensive purification steps. Most reported electrochemical methods employ a single preformed bulk graphite as electrode, which limits their scalability, reproducibility, and degree of oxidation. Herein, we reported a novel mechanically assisted electrochemical method to produce graphene oxide directly from graphite flakes. The electrochemically derived graphene oxide (EGO) shows a good degree of oxidation but with less physical defects than chemically derived graphene oxide (CGO). EGO has good dispersibility in water and various solvents and, in particular, displays ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.