Abstract

Abstract Flexible conductive electrodes are essential components for organic optoelectronic devices (OODs). One of the main challenges in the development of flexible OODs is to achieve an optimal combination of photoelectrical properties, enhanced flexibility and stability in transparent conductive electrodes (TCEs). In this work, high-performance flexible nonfullerene organic solar cells (OSCs) and polymer light-emitting diodes (PLEDs) based on TCEs of silver nanowires (AgNWs) encapsulated with an ultra-thin atomic layer deposited aluminum oxide (Al2O3) have been demonstrated. The hybrid AgNWs/Al2O3 composite electrodes with enhanced thermal, ambient and mechanical stabilities enable an efficient flexible transparent electrode with high transmittance and conductivity, which can synergistically optimize the device performance of nonfullerene OSCs and PLEDs. The maximum power conversion efficiency value of 7.03%, as well as a current efficiency of 7.26 cd A−1 for flexible OSCs and PLEDs are achieved, respectively. Notably, excellent flexibility, long-term atmospheric and thermal stabilities have been systematically investigated and demonstrated. These results provide a new design platform for the fabrication of high-performance, flexible transparent electrodes, which can be further explored in a wide range of organic optoelectronics field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call