Abstract

Schiff base reaction crosslinking hydrogels are advantageous by rapid formation and absence of external crosslinkers. However, poor mechanical hindered their broader applications. Here, a mechanically strengthened tissue adhesive was constructed through incorporation of chitin nano-whiskers (CtNWs) with a Schiff base crosslinking hydrogel of carboxymethyl chitosan (CMCS) and dextran dialdehyde (DDA). The optimal formulation of complexed hydrogel exhibited 1.87 folds higher compressive stress than non-complexed and 1.51 time higher adhesive strength on porcine skin. The complexed hydrogel exhibited negligible cytotoxicity, anti-swelling performance in PBS, optimum antibacterial and hemostatic capacities. In vivo implantation studies confirmed the complexed hydrogel was degradable without long-term inflammatory responses. Desirable efficacy of injectable complexed hydrogel as hemostat was demonstrated in rat liver injury model, which could avoid severe postoperative adhesion and necrosis as observed in the treatment with commercial 3 M™ vetbond™ tissue adhesive. The results highlighted that the complexed hydrogel potentiated rapid hemostasis and wound repair applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.