Abstract
This paper examines the relationship between mechanical deformation and the electronic properties of self-assembled monolayers (SAMs) of the oligothiophene 4-([2,2′:5′,2″:5″,2‴-quaterthiophen]-5-yl)butane-1-thiol (T4C4) in tunneling junctions using conductive probe atomic force microscopy (CP-AFM) and eutectic Ga–In (EGaIn). We compared shifts in conductivity, transition voltages of T4C4 with increasing AFM tip loading force to alkanethiolates. While these shifts result from an increasing tilt angle from penetration of the SAM by the AFM tip for the latter, we ascribe them to distortions of the π system present in T4C4, which is more mechanically robust than alkanethiolates of comparable length; SAMs comprising T4C4 shows about five times higher Young’s modulus than alkanethiolates. Density functional theory calculations confirm that mechanical deformations shift the barrier height due to changes in the frontier orbitals caused by small rearrangements to the conformation of the quaterthiophene moiety. The mechanical robustness of T4C4 manifests as an increased tolerance to high bias in large-area EGaIn junctions suggesting that electrostatic pressure plays a significant role in the shorting of molecular junctions at high bias.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.