Abstract

The reduction of nickel oxide with graphite during ball milling at both ambient and elevated temperatures was investigated using X-ray diffraction (XRD), simultaneous thermogravimetry and differential thermal analysis (TG/DTA), and electron microscopy. It was found that milling at ambient temperature did not result in the reduction of nickel oxide to nickel. However, milling significantly reduced the critical reaction temperature for the reduction, from 1350 K for the unmilled sample to ∼650 K for samples milled for 12 hours or longer. This reduction in reaction temperature is rationalized in terms of the microstructural refinement observed in the milled samples. The reduction of nickel oxide to nickel was observed to occur at elevated temperatures during milling. The thermodynamics and kinetics of the reduction reaction are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call