Abstract

Mechanical wounding in plants, which are capable of generating defense responses possibly associated with nitro-oxidative stress, can be caused by (a)biotic factors such as rain, wind, herbivores and insects. Sea rocket (Cakile maritima L.), a halophyte plant belonging to the mustard family Brassicaceae, is commonly found on sandy coasts throughout Europe. Using 7-day-old Cakile maritima L. seedlings, mechanical wounding was induced in hypocotyls by pinching with a striped-tip forceps; after 3 h, several biochemical parameters were analyzed in both the damaged and unwounded organs (green cotyledons and roots). We thus determined NO production, H2O2 content, lipid oxidation as well as protein nitration patterns; we also identified several antioxidant enzymes including catalase, superoxide dismutase (SOD) isozymes, peroxidases, ascorbate-glutathione cycle enzymes and NADP-dehydrogenases. All these parameters were differentially modulated in the damaged (hypocotyls) and unwounded organs, which clearly indicated an induction of CuZnSOD V in the three organs, an increase in protein nitration in green cotyledons and an induction of NADP-isocitrate dehydrogenase activity in roots. On the whole, our results indicate that the wounding of hypocotyls, which showed an active ROS metabolism and oxidative stress, causes long-distance signals that also trigger responses in unwounded tissues with a more active RNS metabolism. These data therefore confirm the existence of local and long-distance responses which counteract negative effects and provide appropriate responses, enabling the wounded seedlings to survive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call