Abstract

AbstractThe successful production of organic vegetables relies heavily on mechanical weeding, flame weeding and stale seedbeds. These operations involve repeated passes by tractors. Mechanical weeding also involves regular tillage. This combination of repeated tillage and compaction changes soil structure. We studied these structural changes in two fields of organic carrots and one field of beans in eastern Scotland. Structure was described by measuring soil strength with a vane shear tester and a cone penetrometer, by measuring bulk density and by visual assessment. Under beans, vane shear strength below the growing root zone was highly variable and in some areas was high enough to restrict root growth (>50 kPa). The carrots were grown in beds containing crop rows separated by bare soil. The bare soil was regularly weeded mechanically. The structure of this weeded soil in the top 10 cm layer of a loam eventually became disrupted and compacted enough to deter root growth (vane shear strength of 70 kPa). In addition the topsoil and subsoil in the wheel‐tracks between the beds became very compact with little distinguishable structure. This compaction extended to the subsoil and persisted into the next cropping season (cone resistance >3 MPa at 35–50 cm depth). Reduced tillage by discing without ploughing was used to incorporate the straw used to protect the carrots overwinter and prepare the soil for the next crop. The resulting topsoil quality was poor leading to anaerobic growing conditions which restricted growth of the following crop and led to losses of the greenhouse gas nitrous oxide. The greatest threat to soil quality posed by mechanical weeding was subsoil compaction by tractor wheeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call