Abstract

We sought to assess whether mechanical unloading has beneficial effects on cardiomyocytes from doxorubicin-induced cardiomyopathy in rats. Mechanical unloading by a left ventricular assist device (LVAD) improves the cardiac function of terminal heart failure in humans. However, previous animal studies have failed to demonstrate beneficial effects of mechanical unloading in the myocardium. The effects of mechanical unloading by heterotopic abdominal heart transplantation were evaluated in the myocardium from doxorubicin-treated rats by analyzing the intracellular free calcium level ([Ca(2+)](i)) and the levels of intracellular Ca(2+)-regulatory proteins. In doxorubicin-treated rats, the duration of cell shortening and [Ca(2+)](i) transients in cardiomyocytes was prolonged (432 +/- 28.2% of control in 50% relaxation time; 184 +/- 10.5% of control in [Ca(2+)](i) 50% decay time). Such prolonged time courses significantly recovered after mechanical unloading (114 +/- 10.4% of control in 50% relaxation time; 114 +/- 5.8% of control in 50% decay time). These effects were accompanied by an increase in sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) protein levels (0.97 +/- 0.05 in unloaded hearts vs. 0.41+/- 0.09 in non-unloaded hearts). The levels of other intracellular Ca(2+)-regulatory proteins (phospholamban and ryanodine receptor) were not altered after mechanical unloading in doxorubicin-treated hearts. These parameters in unloaded hearts without doxorubicin treatment were similar to normal hearts. Mechanical unloading increases functional sarcoplasmic reticulum Ca(2+) ATPase and improves [Ca(2+)](i) handling and contractility in rats with doxorubicin-induced cardiomyopathy. These beneficial effects of mechanical unloading were not observed in normal hearts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.