Abstract

Mechanical unfolding of single polyubiquitin molecules subjected to a constant stretching force showed nonexponentiality in the measured probability density of unfolding (waiting time distribution) and the survival probability of the folded state during the course of the measurements. These observations explored the relevance of disorder present in the system under study with implications for a static disorder approach to rationalize the experimental results. Here, an approach for dynamic disorder is presented based on Zwanzig’s fluctuating bottleneck (FB) model, in which the rate of the reaction is controlled by the passage through the cross-sectional area of the bottleneck. The radius of the latter undergoes stochastic fluctuations that in turn is described in terms of the end-to-end distance fluctuations of the Rouse-like dynamics using a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise. Our results are comprised of analytical expressions for the survival probability and waiting time distribution, which show excellent agreement with the experimental data throughout the range of the applied forces. In addition, by fitting the survival probabilities at different stretching forces, we quantify two system parameters, namely, the average free energy ΔGav and the average distance to the transition state Δxav, both perfectly recovered the experimental estimates. These agreements validate the present model of polymer dynamics, which captures the very essence of dynamic disorder in single-molecule pulling experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.