Abstract

It is difficult to determine the structural stability of the individual subunits or protomers of many proteins in the cell that exist in an oligomeric or complexed state. In this study, we used single-molecule force spectroscopy on seven subunits of covalently linked cochaperonin GroES (ESC7) to evaluate the structural stability of the subunit. A modified form of ESC7 was immobilized on a mica surface. The force-extension profile obtained from the mechanical unfolding of this ESC7 showed a distinctive sawtooth pattern that is typical for multimodular proteins. When analyzed according to the worm-like chain model, the contour lengths calculated from the peaks in the profile suggested that linked-GroES subunits unfold in distinct steps after the oligomeric ring structure of ESC7 is disrupted. The evidence that structured subunits of ESC7 withstand external force to some extent even after the perturbation of the oligomeric ring structure suggests that a stable monomeric intermediate is an important component of the equilibrium unfolding reaction of GroES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.