Abstract

Mechanical tuning of a 3D-printed, polymer-based one-dimensional photonic crystal was demonstrated in the terahertz spectral range. The investigated photonic crystal consists of 13 alternating compact and low-density layers and was fabricated through single-step stereolithography. While the compact layers are entirely polymethacrylate without any intentional internal structures, the low-density layers contain sub-wavelength sized slanted columnar inclusions to allow the mechanical compression in a direction normal to the layer interfaces of the photonic crystal. Terahertz transmission spectroscopy of the photonic crystal was performed in a spectral range from 83 to 124 GHz as a function of the compressive strain. The as-fabricated photonic crystal showed a distinct photonic bandgap centered at 109 GHz, which blue shifted under compressive stress. A maximum shift of 12 GHz in the bandgap center frequency was experimentally demonstrated. Stratified optical models incorporating simple homogeneous and inhomogeneous compression approximations were used to analyze the transmission data. A good agreement between the experimental and model-calculated transmission spectra was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call