Abstract
AbstractPolybutylene terephthalate (PBT) composites were prepared with 1.0 phr synthetic wollastonite nanofibers (SWN), natural wollastonite (NW) and graphene oxide (GO) to study the effect of different fillers on mechanical, thermal, tribological, and flammability properties. The properties of PBT composites are related to the size, structure, and interfacial adhesion of the fillers in PBT matrix. PBT/SWN demonstrated the highest tensile strength and Young's modulus (6% and 9% increment), followed by PBT/NW (1.3% and 7% increment) and PBT/GO (2% decrement and 4% increment). PBT/SWN gave the highest degradation temperature (409°C), followed by PBT/GO (404.7°C). The maximum enhancement in wear resistance (73%) by PBT/SWN and anti‐friction performance (26%) by PBT/GO evinced the excellent load‐bearing ability of SWN and the great lubricating effect of GO. PBT/NW had the lowest peak heat release rate, smoke, and carbon dioxide production rate. This study shows that PBT composites have great potential in different automotive applications.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.