Abstract
AbstractThe article describes the properties of acrylonitrile butadiene copolymer (NBR)–nanocalcium carbonate (NCC) nanocomposites prepared by a two‐step method. The amount of NCC was varied from 2 phr to 10 phr. Cure characteristics, mechanical properties, dynamic mechanical properties, thermal behavior, and transport properties of NBR–NCC composites were evaluated. For preparing NBR nanocomposites, a master batch of NBR and NCC was initially made using internal mixer. Neat NBR and the NBR–NCC masterbatch was compounded with other compounding ingredients on a two roll mill. NCC activated cure reaction upto 5 phr. The tensile strength increased with the nanofiller content, whereas NBR–NCC containing 7.5 phr exhibited the highest modulus. The storage modulus (E′) increased up to 5 phr NCC loading; the reinforcing effect of NCC was seen in the increase of modulus which was more significant at temperatures above Tg. The effect of nanofiller content and temperature on transport properties was evaluated. The solvent uptake decreased with NCC content. The mechanism of diffusion of solvent through the nanocomposites was found to be Fickian. Transport parameters like diffusion, sorption, and permeation constants were determined and found to decrease with nanofiller content, the minimum value being at 7.5 phr. Thermodynamic constants such as enthalpy and activation energy were also evaluated. The dependence of various properties on NCC was supported by morphological analysis using transmission electron microscopy. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.