Abstract

Hempcrete is a sustainable biocomposite that can reduce buildings’ embodied energy while improving energy performance and indoor environmental quality. This research aims to develop novel insulating hemp-lime composites using innovative binder mixes made of recycled and low-embodied energy pozzolans. The characterization of composites’ mechanical and hygrothermal properties includes measuring compressive strength, splitting tensile strength, thermal conductivity, specific heat capacity, and moisture buffer capacities. This study also investigates the impact of sample densities and water content on compressive strength at different ages. The findings suggest that mixes with a 1:1 binder to hemp ratio and 300−400 kg/m3 density have hygrothermal and mechanical properties suitable for insulating infill wall applications. Hence, compressive strengths, thermal conductivity, and specific heat capacity values range from 0.09 to 0.57 MPa, 0.087 to 0.10 W/m K, and 1250 to 1557 J/kg K, respectively. The average moisture buffer value for all hempcrete samples of 2.78 (gm/m2 RH%) indicates excellent moisture buffering capacity. Recycled crushed brick pozzolan can enhance the hygrothermal performance of the hemp-lime composites. Thus, samples with 10% crushed brick have the lowest thermal conductivity considering their density and the highest moisture buffer capacity. The new formulas of hydrated lime and crushed brick have mechanical properties comparable to metakaolin and hydraulic lime formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.