Abstract

Mechanical, dynamic-mechanical and thermal performance of polypropylene (PP) composites which are composed of (3-Aminopropyl) triethoxysilane (APTES) functionalized Halloysite nanotubes (HNTs) were investigated. Functionalization of HNTs was confirmed by the presence of amine stretching peaks in the FTIR spectrum. A decrease in the agglomeration and high dispersion of APTES-HNTs across the PP matrix was confirmed by scanning electron micrographs (SEM). The mechanical properties of APTES-HNT-PP polymer composites were superior over their unmodified counterparts. Tensile properties such as maximum strength, Young’s modulus and impact strength were significantly enhanced by 28%, 45% and 60% respectively, with 6 wt% incorporation of surface-modified HNTs into PP matrix. A drastic improvement of stiffness and thermal stability of composites was noted with the incorporation of APTES modified HNTs into PP polymer. Differential scanning calorimetry (DSC) analysis showed a total increase of 22% in the crystallinity of clay polymer nanocomposite after filled with surface-modified HNTs. Overall, the outcome of this research confirms the modification of the surface of HNTs with a silane coupling agent, which enhances the mechanical and thermal performance of PP composites incorporated HNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call