Abstract

AbstractThe high-loaded parts of modern aircrafts and helicopters are often produced from polymeric composite materials. Such materials consist of reinforcing fibers, packed by layers with the different angles, and resin, which uniformly distributes the structural stresses between fibers. These composites should have an orthotropic symmetry of mechanical properties to obtain the desirable spatial distribution of elastic moduli consistent to the external loading pattern. Main requirements to the aircraft composite materials are the specified elastic properties (9 for orthotropic composite), long-term strength parameters, high resistance against the environmental influences, low thermal expansion to maintain the shape stability. These properties are ensured by an exact implementation of technological conditions and many testing procedures performed with the fibers, resin, prepregs and ready components. Most important mechanical testing procedures are defined by ASTM, SACMA and other standards. However in each case the wide diversity of components (dimensions and lay-up of fibers, rheological properties of thermosetting resins) requires a specific approach to the sample preparation, testing, and numerical processing of the testing results to obtain the veritable values of tested parameters. We pay the special attention to the cases where the tested specimens are cut not from the plates recommended by standards, but from the ready part manufactured with the specific lay-up, tension forces on the reinforcing fiber at the filament winding, and curing schedule. These tests can provide most useful information both for the composite structural design and to estimate a quality of the ready parts. We consider an influence of relation between specimen dimensions and pattern of the fibers winding (or lay-up) on the results of mechanical testing for determination of longitudinal, transverse and in-plane shear moduli, an original numerical scheme for reconstruction of in-plane shear modulus measured by the modified Iosipescu method which use finite element based numerical processing and indicative data preliminary obtained by the short-beam test. The sensitivity and ability to decoupling the values of in-plane and interlaminar shear moduli obtained by the sample twisting test is studied and discussed. KeywordsPolymeric orthotropic compositeElastic moduliShear moduliASTMSACMAAGATEFibers windingCuringIOSIPESCU methodFinite element (FE) analysisShort-beam testing methodYoung’s modulusPoisson’s ratio

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.