Abstract

Post-operative infection often occurs following orthopedic and dental implant placement requiring systemically administered antibiotics. However, this does not provide long-term protection. Over the last few decades, alternative methods involving slow drug delivery systems based on biodegradable poly-lactic acid and antibiotic loaded hydroxyapatite microspheres were developed to prevent post-operative infection. In this study, thermally anodised and untreated Ti6Al4V discs were coated with Poly-Lactic Acid (PLA) containing Gentamicin (Gm) antibiotic-loaded coralline Hydroxyapatite (HAp) are investigated. Following chemical characterization, mechanical properties of the coated samples were measured using nanoindentation and scratch tests to determine the elastic modulus, hardness and bonding adhesion between film and substrate. It was found that PLA biocomposite multilayered films were around 400nm thick and the influence and effect of the substrate were clearly observed during the nanoindentation studies with heavier loads. Scratch tests of PLA coated samples conducted at ~160nm depth showed the minimal difference in the measured friction between Gm and non Gm containing films. It is also observed that the hardness values of PLA film coated anodised samples ranged from 0.45 to 1.9GPa (dependent on the applied loads) against untreated coated samples which ranged from 0.28 to 0.8GPa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call