Abstract

In this study, uniaxial tension tests and high-stress repeated tension and compression tests were conducted on 32 APC (all vertical members precast in concrete structures) connectors. After high-stress repeated tension and compression, the bearing capacities of the connector specimens improved due to the strengthening of the steel bars, and the ductility of the specimens was reduced due to the further development of cracks between the steel bars and the grout. The residual deformation values of the specimens, namely u0 (uniaxial tension) and u20 (repeated tension and compression), were reduced with the increase in the lapping length of the specimens. The longitudinal compressive strain and hoop tensile strain of the middle section of the sleeve near the steel bar side were reduced under the ultimate load state when the specimens were stretched under uniaxial tension and in the last tension process after repeated loading with the increase in the lapping length. The distribution and development of the longitudinal compression stress of the sleeve were analysed based on the bonding stress of the steel bar and concrete. Finally, the ultimate bonding strength and critical lapping length formulas were proposed, which involved the introduction of a grouting defect coefficient ω.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call