Abstract

AbstractDislocation‐tuned functional properties such as electrical conductivity, thermal conductivity, and ferroelectric properties in oxides are attracting increasing research interest. A prerequisite for harvesting these functional properties in oxides requires successful introduction and control of dislocation density and arrangement without forming cracks, which is a great challenge due to their brittle nature. Here, we report a simple method to mechanically tailor the dislocation densities in single‐crystal perovskite SrTiO3. By using a millimeter‐sized Brinell indenter, dislocation densities from ∼1010 to ∼1013 m−2 are achieved by increasing the number of indenting cycles. Depending on tip radius and indenting load, large and crack‐free plastic zones over hundreds of micrometers are created. The dislocation multiplication mechanisms are discussed, and the work hardening in the plastic zone is evaluated by micro‐hardness measurement as a function of dislocation density. This simple approach opens many new opportunities in the area of dislocation‐tuned functional and mechanical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.