Abstract

Bone to mechanical loading elicits a biological response that has clinical significance for several areas in dental medicine, including orthodontic tooth movement, tempromandibular joint disease, and endosseous dental implant osseointegration. Human orthopedic studies of failed hip implant sites have identified increased mRNA expression of several collagen-degrading matrix metalloproteinases (MMPs), while in vitro experiments have shown increases in MMP secretion after exposure to inflammatory mediators. This investigation evaluates the effects of mechanical deformation on in vitro osteoblasts by assessing changes in MMP gene expression and enzyme activity. We seeded mouse neonatal calvarial osteoblasts onto flexible 6-well plates and subjected to continuous cyclic mechanical stretching. The expression and activity of mRNA for several MMPs (2, 3, 9, and 10) was assessed. When subjected to mechanical stress in culture, only mRNA specific for MMP-9 was significantly increased compared to nonstretched controls (P < .005). Measurement of MMP activity by gelatin zymography demonstrated that none of the MMPs showed increased activity with stretching; however, MMP-2 activity decreased. Our results suggest that in response to stretch, MMP-2 responds rapidly by inhibiting conversion of a MMP-2 to the active form, while a slower up-regulation of MMP-9 may play a role in the long-term remodeling of extracellular matrix in response to continuous mechanical loading. This study suggests that the regulation of metalloproteinases at both the mRNA and protein level are important in the response of bone to mechanical stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.