Abstract
A reciprocal relationships between osteogenesis and adipogenesis has been observed in vitro and in vivo, and mechanical stretch has been believed to be a regulating factor of osteo-adipogenic axis differentiation of mesenchymal stem cells. In this study, rat adipose stem cells (ASCs) were isolated and cultured in adipogenic or normal medium. Their exposure to cyclic mechanical stretch (2000 με, 1 Hz) in the presence of adipogenic medium decreased mRNA and protein level of PPAR-γ, and increased Runx2 mRNA and protein levels as well as Pref-1 mRNA level, compared to static samples. ASCs cultured in normal medium without adipogenic induction did not show any significant change in mRNA expression of PPAR-γ, Runx2, nor Pref-1 irrespective of mechanical loading. Stretching induced phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) during the induction period. It was concluded that mechanical stretch inhibited adipogenesis and stimulated osteogenesis of these ASCs in the presence of adipogenic medium and that ERK1/2 activation may be involved in the mechanical stress-induced trans-differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.