Abstract

In patients with acute respiratory distress syndrome, mechanical over-distension of the lung by a large tidal volume causes further damage and inflammation, called ventilator-induced lung injury (VILI), however, it is unclear how mechanical stretch affects the cellular functions or morphology in human pulmonary microvascular endothelial cells (HPMVECs). IL-8 has been proposed to play an important role in the progression of VILI by activating neutrophils. We demonstrated that HPMVECs exposed to cyclic uni-axial stretch produce IL-8 protein with p38 activation in strain- and time-dependent manners. The IL-8 synthesis was not regulated by other signal transduction pathways such as ERK1/2, JNK, or stretch-activated Ca 2+ channels. Moreover, cyclic stretch enhanced IL-6 and monocyte chemoattractant protein-1 production and reoriented cell perpendicularly to the stretch axis accompanied by actin polymerization. Taken together, IL-8 production by HPMVECs due to excessive mechanical stretch may activate neutrophilic inflammation, which leads to VILI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.