Abstract
Mechanical stress effect on aging behavior of Bi3.25La0.75Ti3O12 (BLT) and PbZr0.53Ti0.47O3 (PZT) films was investigated. It is found that the remnant polarization decreases with time while the coercive field increases in stress-free BLT films. For unconfined PZT films, both the remnant polarization and the coercive field decrease as time elapses. The applied tensile stress weakens the aging of remnant polarization of BLT films but strengthens the aging of coercive field, while the applied tensile stress possesses opposite effect. In contrary, the applied compressive stress simultaneously improves the aging behavior of both remnant polarization and coercive field of PZT films. Mechanical-stress-induced variation of domain wall mobility in different materials was suggested as the possible origin of these observations. This work indicates that the aging behavior modification using stress could be realized, and it is helpful for promoting the reliability of ferroelectric films for industrial applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.