Abstract

Modeling the mechanical stress birefringence and slow-axis distributions of optical plates is critical for optical lithography systems. In this paper, the distributions of mechanical stress birefringence and the slow axes of optical plates were modeled by the finite element (FE) model, stress optic relations, and the ray-traced Jones matrices method. To validate this model, the load incremental approach was utilized to reduce the disturbance of residual birefringence in mechanical stress birefringence measurement. The measured distributions of birefringence and the slow axis of the optical plate show a good agreement with our numerical simulation results. This model provides a better understanding of simulation of mechanical stress birefringence and provides a reference for optical design and polarization analysis of other optical elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.