Abstract

Au–Ni plated Cu pads were reflow soldered by using lead free solder balls. The microstructure and strength of the as-reflowed solder joints were investigated. For solder joints using Cu-free Sn–Pb and Sn–Ag solder balls, a Ni3Sn4 reaction layer was formed on the boundary between solder and pads. On the other hand, a Cu–Sn based (Cu, Ni)6Sn5 reaction layer (η′) was formed in solder joints using Cu-containing solder balls. The growth rate for an η′ reaction layer during heat exposure at 423 K was much slower than that for a Ni3Sn4 reaction layer. This suppression of an η′ reaction layer growth can be attributed to the fact that the Cu in solder balls was mostly removed during the formation of the η′ layer. By ball shear test, cold bump pull and hot bump pull tests, mechanical properties of the obtained BGA joints were investigated. Fracture loads and crack propagation path changed by changing the mechanical tests, the BGA joints using Cu containing Sn–Ag–Cu solder or low P type Ni plating revealed better mechanical properties. We established the mismatch of the boundaries between reaction layers and the P-enriched Ni–P layer, which was caused by the chained voids formed due to the Kirkendall effect, led to low joint strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.