Abstract

5-Hydroxytryptamine (5-HT) released from enterochromaffin cells activates secretory and peristaltic reflexes necessary for lubrication and propulsion of intestinal luminal contents. The aim of this study was to identify mechanosensitive intracellular signaling pathways that regulate 5-HT release. Human carcinoid BON cells displayed 5-HT immunoreactivity associated with granules dispersed throughout the cells or at the borders. Mechanical stimulation by rotational shaking released 5-HT from BON cells or from guinea pig jejunum during neural blockade with tetrodotoxin. In streptolysin O-permeabilized cells, guanosine 5'-O- (2-thiodiphosphate) (GDP-beta-S) and a synthetic peptide derived from the COOH terminus of Galphaq abolished mechanically evoked 5-HT release, while the NH(2)-terminal peptide did not. An antisense phosphorothioated oligonucleotide targeted to a unique sequence of Galphaq abolished mechanically evoked 5-HT release and reduced Galphaq protein levels without affecting the expression of Galpha(11). Depletion and chelation of extracellular calcium did not alter mechanically evoked 5-HT release, whereas depletion of intracellular calcium stores by thapsigargin and chelation of intracellular calcium by 1,2-bis (o-Aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM) reduced 5-HT release. Mechanically evoked 5-HT release was inhibited by somatostatin-14 in a concentration-dependent manner. The results suggest that mechanical stimulation of enterochromaffin-derived BON cells directly or indirectly stimulates a G protein-coupled receptor that activates Galphaq, mobilizes intracellular calcium, and causes 5-HT release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.