Abstract

Mechanical stiffness is closely related to cell adhesion and rounding in some cells. In leukocytes, dephosphorylation of ezrin/radixin/moesin (ERM) proteins is linked to cell adhesion events. To elucidate the relationship between surface stiffness, cell adhesion, and ERM dephosphorylation in leukocytes, we examined the relationship in the myelogenous leukemia line, KG-1, by treatment with modulation drugs. KG-1 cells have ring-shaped cortical actin with microvilli as the only F-actin cytoskeleton, and the actin structure constructs the mechanical stiffness of the cells. Phorbol 12-myristate 13-acetate and staurosporine, which induced cell adhesion to fibronectin surface and ERM dephosphorylation, caused a decrease in surface stiffness in KG-1 cells. Calyculin A, which inhibited ERM dephosphorylation and had no effect on cell adhesion, did not affect surface stiffness. To clarify whether decreasing cell surface stiffness and inducing cell adhesion are equivalent, we examined KG-1 cell adhesion by treatment with actin-attenuated cell softening reagents. Cytochalasin D clearly diminished cell adhesion, and high concentrations of Y27632 slightly induced cell adhesion. Only Y27632 slightly decreased ERM phosphorylation in KG-1 cells. Thus, decreasing cell surface stiffness and inducing cell adhesion are not equivalent, but these phenomena are coordinately regulated by ERM dephosphorylation in KG-1 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.