Abstract

Disulfide bonds are covalent bonds that connect nonlocal fragments of proteins, and they are unique post-translational modifications of proteins. They require the oxidizing environment to be stable, which occurs for example during oxidative stress; however, in a cell the reductive environment is maintained, lowering their stability. Despite many years of research on disulfide bonds, their role in the protein life cycle is not fully understood and seems to strictly depend on a system or process in which they are involved. In this article, coarse-grained UNited RESidue (UNRES), and all-atom Assisted Model Building with Energy Refinement (AMBER) force fields were applied to run a series of steered molecular dynamics (SMD) simulations of one of the most studied, but still not fully understood, proteins—ribonuclease A (RNase A). SMD simulations were performed to study the mechanical stability of RNase A in different oxidative–reductive environments. As disulfide bonds (and any other covalent bonds) cannot break/form in any classical all-atom force field, we applied additional restraints between sulfur atoms of reduced cysteines which were able to mimic the breaking of the disulfide bonds. On the other hand, the coarse-grained UNRES force field enables us to study the breaking/formation of the disulfide bonds and control the reducing/oxidizing environment owing to the presence of the designed distance/orientation-dependent potential. This study reveals that disulfide bonds have a strong influence on the mechanical stability of RNase A only in a highly oxidative environment. However, the local stability of the secondary structure seems to play a major factor in the overall stability of the protein. Both our thermal unfolding and mechanical stretching studies show that the most stable disulfide bond is Cys65–Cys72. The breaking of disulfide bonds Cys26–Cys84 and Cys58–Cys110 is associated with large force peaks. They are structural bridges, which are mostly responsible for stabilizing the RNase A conformation, while the presence of the remaining two bonds (Cys65–Cys72 and Cys40–Cys95) is most likely connected with the enzymatic activity rather than the structural stability of RNase A in the cytoplasm. Our results prove that disulfide bonds are indeed stabilizing fragments of the proteins, but their role is strongly redox environment-dependent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call